3463. Check If Digits Are Equal in String After Operations II

Share this post on:

You are given a string s consisting of digits. Perform the following operation repeatedly until the string has exactly two digits:

  • For each pair of consecutive digits in s, starting from the first digit, calculate a new digit as the sum of the two digits modulo 10.
  • Replace s with the sequence of newly calculated digits, maintaining the order in which they are computed.

Return true if the final two digits in s are the same; otherwise, return false.

 

Example 1:

Input: s = “3902”

Output: true

Explanation:

  • Initially, s = "3902"
  • First operation:
    • (s[0] + s[1]) % 10 = (3 + 9) % 10 = 2
    • (s[1] + s[2]) % 10 = (9 + 0) % 10 = 9
    • (s[2] + s[3]) % 10 = (0 + 2) % 10 = 2
    • s becomes "292"
  • Second operation:
    • (s[0] + s[1]) % 10 = (2 + 9) % 10 = 1
    • (s[1] + s[2]) % 10 = (9 + 2) % 10 = 1
    • s becomes "11"
  • Since the digits in "11" are the same, the output is true.

Example 2:

Input: s = “34789”

Output: false

Explanation:

  • Initially, s = "34789".
  • After the first operation, s = "7157".
  • After the second operation, s = "862".
  • After the third operation, s = "48".
  • Since '4' != '8', the output is false.

 

Constraints:

  • 3 <= s.length <= 105
  • s consists of only digits.

from typing import List

class Solution:
    def binmod10(self, n: int, k: int) -> int:
        mod2 = self.binmod2(n, k)
        mod5 = self.binmod5(n, k)
        for i in range(10):
            if i % 2 == mod2 and i % 5 == mod5:
                return i
        return 0

    def binmod2(self, n: int, k: int) -> int:
        # Compute binom(n, k) mod 2 using bit-by-bit checking.
        while k > 0:
            if (k & 1) > (n & 1):
                return 0
            n >>= 1
            k >>= 1
        return 1

    def binmod5(self, n: int, k: int) -> int:
        # Compute binom(n, k) mod 5 by processing each digit in base 5.
        res = 1
        while n > 0 or k > 0:
            nd = n % 5
            kd = k % 5
            if kd > nd:
                return 0
            res = (res * self.binsmall(nd, kd)) % 5
            n //= 5
            k //= 5
        return res

    def binsmall(self, n: int, k: int) -> int:
        # For n, k less than 5, use precomputed factorials modulo 5.
        if k > n:
            return 0
        fact = [1, 1, 2, 1, 4]  # factorials mod 5 for 0, 1, 2, 3, 4.
        numerator = fact[n]
        denominator = (fact[k] * fact[n - k]) % 5
        deninv = 0
        # Find the multiplicative inverse of denominator modulo 5.
        for i in range(5):
            if (denominator * i) % 5 == 1:
                deninv = i
                break
        return (numerator * deninv) % 5

    def hasSameDigits(self, s: str) -> bool:
        """
        For a string s, let L = len(s) and m = L - 2.
        For each i in [0, m], compute:
            val = binmod10(m, i)
            s1 += val * (digit at position i) mod 10
            s2 += val * (digit at position i+1) mod 10
        Return True if s1 and s2 (mod 10) are equal.
        """
        L = len(s)
        m = L - 2
        s1, s2 = 0, 0
        for i in range(m + 1):
            val = self.binmod10(m, i)
            d1 = int(s[i])
            d2 = int(s[i+1])
            s1 = (s1 + val * d1) % 10
            s2 = (s2 + val * d2) % 10
        return s1 == s2

Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *