3464. Maximize the Distance Between Points on a Square

Share this post on:

You are given an integer side, representing the edge length of a square with corners at (0, 0)(0, side)(side, 0), and (side, side) on a Cartesian plane.

You are also given a positive integer k and a 2D integer array points, where points[i] = [xi, yi] represents the coordinate of a point lying on the boundary of the square.

You need to select k elements among points such that the minimum Manhattan distance between any two points is maximized.

Return the maximum possible minimum Manhattan distance between the selected k points.

The Manhattan Distance between two cells (xi, yi) and (xj, yj) is |xi - xj| + |yi - yj|.

 

Example 1:

Input: side = 2, points = [[0,2],[2,0],[2,2],[0,0]], k = 4

Output: 2

Explanation:

Select all four points.

Example 2:

Input: side = 2, points = [[0,0],[1,2],[2,0],[2,2],[2,1]], k = 4

Output: 1

Explanation:

Select the points (0, 0)(2, 0)(2, 2), and (2, 1).

Example 3:

Input: side = 2, points = [[0,0],[0,1],[0,2],[1,2],[2,0],[2,2],[2,1]], k = 5

Output: 1

Explanation:

Select the points (0, 0)(0, 1)(0, 2)(1, 2), and (2, 2).

Constraints:

  • 1 <= side <= 109
  • 4 <= points.length <= min(4 * side, 15 * 103)
  • points[i] == [xi, yi]
  • The input is generated such that:
    • points[i] lies on the boundary of the square.
    • All points[i] are unique.
  • 4 <= k <= min(25, points.length)
from bisect import bisect_left
from typing import List

class Solution:
    def mapPoint(self, side: int, x: int, y: int) -> int:
        """
        Map a boundary point (x, y) to a coordinate in [0, 4*side).
        
        - Bottom edge: (x, 0) -> t = x.
        - Right edge:  (side, y) -> t = side + y.
        - Top edge:    (x, side) -> t = 3*side - x.
        - Left edge:   (0, y) -> t = 4*side - y.
        """
        if y == 0:
            return x
        if x == side:
            return side + y
        if y == side:
            return 3 * side - x
        return 4 * side - y

    def canPlace(self, t: List[int], k: int, side: int, d: int) -> bool:
        """
        Given sorted 1D positions 't' (mapped from points) and a candidate distance 'd',
        check if we can select 'k' points around the circle (with perimeter L = 4*side)
        such that every adjacent gap (in circular order) is at least d.
        """
        n = len(t)
        L = 4 * side
        
        # Build an "extended" array: ext[i] = t[i] for i in [0, n)
        # and ext[i+n] = t[i] + L, to simulate a circular array.
        ext = t + [x + L for x in t]

        # For each possible starting index in the original array
        for i in range(n):
            count = 1
            pos = ext[i]
            idx = i
            # Try to pick k points from ext[i+1] up to ext[i+n] (one full circle)
            for _ in range(1, k):
                target = pos + d
                j = bisect_left(ext, target, idx + 1, i + n)
                if j == i + n:
                    count = -1
                    break
                idx = j
                pos = ext[idx]
                count += 1
            # Check the wrap-around gap: from the last chosen point to (first + L)
            if count == k and (ext[i] + L - pos) >= d:
                return True
        return False

    def maxDistance(self, side: int, points: List[List[int]], k: int) -> int:
        """
        Given the side length 'side' and an array 'points' where each point is [x, y],
        return the maximum candidate distance 'd' (in the range [0, 2*side]) such that there 
        exists a way to select 'k' points (mapped from the given points) around the circle 
        (with circumference L = 4*side) where every adjacent gap is at least d.
        
        We use binary search over d.
        """
        # Map each boundary point to its corresponding 1D coordinate.
        t = [self.mapPoint(side, x, y) for x, y in points]
        t.sort()

        lo, hi, ans = 0, 2 * side, 0
        while lo <= hi:
            mid = lo + (hi - lo) // 2
            if self.canPlace(t, k, side, mid):
                ans = mid
                lo = mid + 1
            else:
                hi = mid - 1
        return ans
Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *